Science 122, Program 23, Alchemy
 

©1998 RCBrill. All rights reserved


Alchemy
Program 23
Lesson 4.1

 


Questions

1.1. Name and briefly describe some of the chemical skills possessed by the ancients?
1.2. Why was carbon an important substance to the ancients?
1.3. In Aristotle's scheme what is the relationship between elements and essential qualities of matter?
1.4. Why did the Greek philosophers reject the concept of atoms?
1.5. Discuss the relationship between atoms and elements.
1.6. What is the alchemical significance of the the number seven?
1.7. What is alchemy?
1.8. Compare and contrast alchemy in the Far East, the Middle East, in Greece, and in medieval Europe.
1.9. Why did alchemists believe that substances could become more noble?
1.10. Describe the goals and accomplishments of alchemy.
1.11. Were all alchemists charlatans or fools? Discuss the concept.
1.12. Discuss the difference between Aristotle's concept of element and that of an alchemists?
1.13. In what ways does alchemy differ from chemistry?

Text References

1.1. Spielberg and Anderson, none.
1.2. Booth and Bloom pp. 223-224; 226-227

Coming Up

Summary

1. Introduction

2. Ancient Chemical Skills

3. Ancient Elements

4. Rocks to Metal

5. Aristotle's Elements

6. Atomist Theory

7. Seven Metals, Seven Days, Seven Planets

8. Alchemy

9. Goals of Alchemy

10. Accomplishments of Alchemy

11. Elements of Alchemy

12. Alchemy vs. Chemistry

       

 

Objectives

1. Describe and discuss the use of chemical technology among ancient peoples
2. List and describe the properties of the elements known to ancient civilizations
3. Describe the process of smelting ores and discuss the significance of the role of carbon in the process
4. Associate the seven ancient metals with the days of the week
5. Discuss the Greek concept of atoms and their rejection of it
6. Describe Aristotle's elements and the qualities associated with them
7. Discuss the mystical aspects of alchemy as models for folklore
8. Distinguish between Eastern and Western alchemy in terms of goals and methods
9. Describe the concept of the hierarchy of matter
10. Distinguish Aristotle's concept of elements from that of the alchemist
11. Describe the goals and objectives of alchemy in modern terms

1. Introduction

1.1. It is often thought that alchemy provided the roots for chemistry, that chemistry grew out of alchemy as a natural evolution of understanding.
1.2. This is not entirely true, and we don't want to leave you with that impression.
1.3. But, it is helpful to consider alchemy in our adventure for at least four reasons.

1.3.1. First, it was based on Aristotle's cosmology, at least in Europe and the Mideast
1.3.2. Second, the concept of an element as a fundamental constituent of matter took a radical turn in Newton's time. We need to compare and contrast this change along with the gradual drift of the concept away from Aristotle's four elements.
1.3.3. Third, although crude, labors of alchemy sorted out processes and properties of substances (apparatus and manipulative techniques) which proved useful in chemical studies once the concept of weight was introduced late in the eighteenth century.
1.3.4. Fourth was the idea of a formal symbolic language for practitioners of the "art."

1.4. The properties without reflect the spirits within
1.5. Alchemy is as much of an anthropological as physical science

1.5.1. Jung: Psychology and Alchemy

1.5.1.1. correspondence between alchemical symbolism and dreams

1.5.2. Arthur J. Hopkins: Practical procedures involving dyeing and color changes
1.5.3. Mircea Eliade: Religion and Myth

1.6. Definition: Alchemy is a cosmic art by which parts of that cosmos - the mineral and animal parts - can be liberated from their temporal existence and attain states of perfection, gold in the case of minerals and for humans, longevity, immortality, and finally redemption. Such transformations can be brought about on the one hand, by the use of a material substance such as the philosopher's stone or elixir or, on the other hand, by revelatory knowledge or psychological enlightenment


1.7. material (exoteric) and spiritual (esoteric) aspects
1.8. arose independently in various places
1.9. singular, unique origin or diverse, multi-cultural origin

1.9.1. metallurgy ==> embryonic growth of metals inside the womb of mother earth

1.10. later linkages and influences commonized ideas

1.10.1. elixir of life in Indian and Chinese, but not in Greek, makes its way to Europe via Arabic alchemy

1.11. two operational concepts

1.11.1. aurifiction: imitation of gold, the realm of artisans

1.11.1.1. fraud or "synthetic" material?

1.11.2. aurifaction: belief in gold-making, the realm of natural philosophers

2. Ancient Chemical Skills

2.1. use of fire
2.2. applied chemical arts and technologies
2.3. metallurgy, glass, pottery, fermentation, explosives, cooking, perfumes, dyes and paints
2.4. reached sophisticated levels by middle ages

3. Ancient Substances and Elements

3.1. knew them as substances, but not elements
3.2. concept of elemental substance begins with Greeks
3.3. element = basic, first principle
3.4. sulfur

3.4.1. odd yellow appearance
3.4.2. burns with blue flames and smelly fumes
3.4.3. leaves no residue when burned
3.4.4. associated with quality of combustibility
3.4.5. fumes associated with volcanic activity
3.4.6. word comes from Sanskrit: copper destroyer
3.4.7. thought to be active agent in mineral formation
3.4.8. also called brimstone

3.5. mercury

3.5.1. a liquid metal
3.5.2. thought to represent passive substance in mineral formation
3.5.3. easiest of all metals to extract from ore

3.6. carbon

3.6.1. occurs as charcoal and coal
3.6.2. key to releasing metallic elements from ores
3.6.3. reducing agent steals oxygen from metals

3.7. gold

3.7.1. won't react chemically
3.7.2. doesn't tarnish
3.7.3. noble element
3.7.4. always found uncombined

3.8. silver

3.8.1. tarnishes slightly
3.8.2. beautiful surface luster and color
3.8.3. usually found uncombined

3.9. copper

3.9.1. occasionally found in native state
3.9.2. usually found combined as ore
3.9.3. smelted in Britain and Europe from 2200 B.C.
3.9.4. alloyed with lead and tin to form bronze

4. Rocks to Metal

4.1. ores reduce to metals when heated with carbon

4.1.1. how difficult to discover
4.1.2. describe process

4.2. discovery of smelting was a major technological step
4.3. stone age --> bronze age --> iron age
4.4. seven metals known in ancient times

4.4.1. gold, silver, iron, mercury, tin, copper, lead
4.4.2. gold and silver valued as wealth
4.4.3. copper alloyed with tin and lead to form bronze
4.4.4. iron falls to earth in meteorites, but otherwise never occurs uncombined
4.4.5. mercury is liquid at room temperatures

4.4.5.1. coats and alloys with gold and other metals
4.4.5.2. one ore reduces with fire alone

5. Aristotle's Elements and Qualities

5.1. generated from one primary matter

5.1.1. like clay onto which qualities could be impressed
5.1.2. formed quartet of elementary substances

5.2. earth, air, fire, water
5.3. linked with essential qualities
5.4. material substances could be analyzed into four components

5.5. Elements and Qualities

5.5.1. substances were combinations of elements and elemental qualities
5.5.2. essential qualities establish central character of a substance
5.5.3. four elements bound together by the moist quality
5.5.4. Fire is ideal mixture of hotness & dryness
5.5.5. one element could be changed into another
5.5.6. add moisture at expense of dryness to transform fire into air
5.5.7. combustion was considered a type of motion (alteration)
5.5.8. wood --> fire, air, earth (ashes), water (condensation)

6. Atomist Theory

6.1. Greek philosophers considered whether matter was infinitely divisible or was composed of indivisible particles
6.2. atomist school was led by Democritus in 5th century B.C.

6.2.1. only existing things are atoms and empty space
6.2.2. early representation of atomic bonding

6.3. Atomism lost out to Aristotle's authority

6.3.1. Pythagoreans gave up atomic concept because it required irrational numbers

6.3.1.1. could not put countable (integral) number of atoms along hypotenuse of most right triangles
6.3.1.2. assumes atoms are all the same size as well as indivisible

6.3.2. a different concept of space
6.3.3. four elements were continuous, fluidlike
6.3.4. no connection between atoms and elements

7. Seven Metals, Seven Days and Seven Planets

 

8. Alchemy

Two Views of Alchemist's Labs

8.1. Introduction

8.2. Middle Eastern Alchemy

8.3 Chinese Alchemy

8.4 Greek Alchemy

8.5 Models For Folklore

8.6 Hierarchy of Matter

8.1. Introduction

8.1.1. Alchemy became a science when technology of dyes and metallurgy confronted and amalgamated with Greek theories of matter and change
8.1.2. Alchemy grew independently at many different locations in different cultures.

8.1.2.1. any culture that had metallurgy

8.1.3. Archetypal

8.1.3.1. C.G. Jung noted that there are similarities between the emblems, symbols, and drawings used in European alchemy and the dreams of ordinary twentieth-century people.
8.1.3.1.1. because alchemical activities were concerned with a spiritual quest to make sense of the universe
8.1.3.1.2. manifests in different forms in different cultures at different times

8.1.4. Modern Definition (repeated from introduction)

8.1.4.1. Alchemy is a cosmic art by which parts of that cosmos - the mineral and animal parts - can be liberated from their temporal existence and attain states of perfection: gold in the case of minerals, and for humans, longevity, immortality and redemption.
8.1.4.2. Such transformations can be brought about on one hand by the use of a material substance such as the 'philosopher's stone' or elixir, or, on the other hand by revelatory knowledge or psychological enlightenment.
8.1.4.3. It is clear from this definition that there were two kinds of alchemical activity: the exoteric or material and the esoteric or spiritual, which could be pursued separately or together, but that time was a significant element. Perfection takes time to attain, but the hope was that the alchemist could find methods to speed up these processes.

8.1.5. Name comes from Arabic

8.1.5.1. Alchemy = Al Khem = black soil (of Nile delta)

8.1.6. Aristotle's knowledge was all that was available

8.1.6.1. served as a paradigm for investigations
8.1.6.2. paradigm became corrupted with time
8.1.6.3. Hellenistic scientists had interest in experimentation which would prove Aristotle's theories to be correct.

8.1.7. Alchemical paradigm was closely associated with mysticism

8.1.7.1. difficult to read alchemists' writings
8.1.7.2. secret, metaphorical, technical language arose
8.1.7.2.1. to maintain a closed shop
8.1.7.2.2. conceal knowledge from the uninitiated
8.1.7.2.3. became more and more picturesque and fanciful
8.1.7.2.4. "The grey wolf devours the King, after which it is buried on a pyre, consuming the wolf and restoring the King to life."
8.1.7.2.4.1. refers to extraction of gold from alloys by skimming off lesser metal sulfides and roasting of the gold antimony alloy until antimony evaporates and pure gold remains
8.1.7.2.4.2. no less mystifiing than "dehydrohalogenate vicinal dihalides with amide ion to provide alkynes"
8.1.7.3. being secretive is a part of mysticism
8.1.7.3.1. from Gk. musterion = secret rite

8.2. Middle Eastern Alchemy

8.2.1. Greek alchemy spread to Arabs, who combined it with ideas and practices of Indian and Chinese
8.2.2. It reached Latin west in eleventh century along with other Arabic translations
8.2.3. This is most likely the origin of the ideas of the philosopher's stone and potable gold (elixir of life), also found in Chinese alchemy.
8.2.4. Jabir ibn Hayyan

8.2.4.1. shadowy eighth century figure
8.2.4.2. over two thousand writings attributed to him
8.2.4.2.1. alchemy, astrology, numerology, medicine, mysticism
8.2.4.3. actually the work of a sect, the Brethren of Purity
8.2.4.3.1. similar to Pythagorean cult
8.2.4.4. works compiled for European publication from transcripts of Jabir's works, published as Summa Perfectionis
8.2.4.4.1. introduced the sulfur mercury theory
8.2.4.4.1.1. metals generated inside earth by mixing of fiery, smoky principle (sulfur) to a watery principle (mercury)
8.2.4.4.1.1.1. most early known metal ores were sulfide
8.2.4.4.1.2. goes along with Stoic idea that metals were held together by a spirit (mercury) and a soul (sulfur)
8.2.4.4.1.3. did not explain how different substantial form of metals and minerals arose
8.2.4.4.2. taught that lighter metals had particles separated by large spaces while dense materials like gold were closely packed
8.2.4.4.3. alchemists' task was to reduce the size of particles and pack them tighter
8.2.4.4.4. changes referred to mercurial agents referred to as medicines, elixirs or tinctures
8.2.4.4.5. in the west became known as the philosopher's stone
8.2.4.4.6. contained defense of alchemy and all forms of technology
8.2.4.4.6.1. alchemy was too practical to be included in the curriculum of the medieval university
8.2.4.4.6.2. seemed theologically suspect because it implied sinful humankind the divine power of creation
8.2.4.4.6.3. argued that people had the right to improve upon nature because it was part of their nature to do so
8.2.4.4.6.4. cited farmers' exploitation of grafting and alchemists ability to synthesize certain natural chemicals
8.2.4.4.6.5. the notion that art and science can equal or outdo the products of nature, and that man can change the order of the natural world by altering those products would have a profound effect on the direction taken by Western culture.

8.2.5. Al-Razi (850 - 923)

8.2.5.1. known as Rhazes
8.2.5.2. compiled practical, straight-forward manual of chemical practice, Secret of Secrets
8.2.5.3. classified substances into metals, vitriols, boraxes, salts, and stones based on solubilites and tastes
8.2.5.4. codified laboratory procedures in to techniques of purification, separation, mixing, and removal of water
8.2.5.5. described and listed chemicals and minerals, apparatus and recipes
8.2.5.6. described beakers, flasks, phials, basins, candle and naphtha lamps, braziers, furnaces, files, spatulas, hammers, ladles, shears, tong, sand and water baths, funnels, flasks, and mortars and pestles
8.2.5.7. described techniques of distillation, sublimation, calcination and solution which formed the basis for chemical engineering from them onwards

8.3. Chinese Alchemy

8.3.1. Aurifactional alchemical ideas and practices were prevalent as early as the fourth century BC in China and were greatly influenced by the Taoist religion and philosophy devised by Lao Tzu ~c. 600 BC) and embodied in his Tao Te Ching (The Way of Life). Like the later Stoics, Taoism conceived the universe in terms of opposites: the male, positive, hot and light principle, 'Yang'; and the female, negative, cool and dark principle, 'Yin'. The struggle between these two forces generated the five elements, water, fire, earth, wood and metal, from which all things were made:
8.3.2. Unlike later Greco-Egyptian alchemy, however, the Chinese were far less concerned with preparing gold from inferior metals than in preparing 'elixirs' that would bring the human body into a state of perfection and harmony with the universe so that immortality was achieved. In Taoist theory this required the adjustment of the proportions of Yin and Yang in the body. This could be achieved practically by preparing elixirs from substances rich in Yang, such as red-blooded cinnabar (mercuric sulfide), gold and its salts, or jade. This doctrine led to careful empirical studies of chemical reactions, from which followed such useful discoveries as gunpowder - a reaction between Yin-rich saltpeter and Yang-rich sulfur - fermentation industries and medicines that must have been rich in sexual hormones. As in western alchemy, Taoist alchemy soon became surrounded by ritual and was more of an esoteric discipline than a practical laboratory art.
8.3.3. Belief in the transformation of blood-like cinnabar into gold dates from 133 BC when Li Shao-Chun appealed to the Emperor Wu Ti to support his investigations:

8.3.3.1. Summon spirits and you will be able to change cinnabar powder into yellow gold. With this yellow gold you may make vessels to eat and drink out of. You will increase your span of life, you will be able to see the hsien of the P'eng-lai [home of the Immortals that is in the midst of the sea. Then you may perform the sacrifices fang and shang and escape death.

8.3.4. From then on, many Chinese texts referred to the consumption of potable gold. This wai tan form of alchemy, which was systematized by Ko Hung in the fourth century AD, was not, however, the only form of Chinese alchemy.
8.3.5. The Chinese also developed nai tan, or physiological, alchemy, in which longevity and immortality were sought not from the drinking of an external elixir, but from an inner elixir' provided by the human body itself. In principle, this was obtained from the adept's own body by physiological techniques involving respiratory, gymnastic and sexual exercises. With the ever-increasing evidence of poisoning from wai tan alchemy, nai tan became popular from the sixth century AD, causing a diminution of laboratory practice. On the other hand, nai tan seems to have encouraged experimentation with body fluids such as urine, whose ritualistic use may have led to the Chinese isolation of sex hormones.
8.3.6. Medicine and alchemy were always intimately connected in Chinese alchemy, a connection that is also found in Arabic alchemy. Since Greek alchemy laid far more stress on metallurgical practices though the preparation of pharmaceutical remedies was also important - it seems highly probable that Arabic writers and experimentalists were 'deeply influenced by Chinese ideas and discoveries'.
8.3.7. There is some evidence that the Chinese knew how to prepare dilute nitric acid. Whether this was prepared from saltpeter - a salt that is formed naturally in midden heaps - or whether saltpeter followed the discovery of nitric acid's ability to dissolve other substances, is not known. Scholars have speculated that gunpowder - a mixture of saltpeter, charcoal and sulfur - was first discovered during attempts to prepare an elixir of immortality. At first used in fireworks, gunpowder was adapted for military use in the tenth century. Its formula had spread to Islamic Asia by the thirteenth century and was to stun the Europeans the following century. Gunpowder and fireworks were probably the two most important chemical contributions of Chinese alchemy, and vividly display the power of chemistry to do harm and good.
8.3.8. As in the Latin west, most of later Chinese alchemy was little more than chicanery, and most of the stories of alchemists' misdeeds that are found in western literature have their literary parallels in China. Although the Jesuit missions, which arrived in China in 1582, brought with them information on western astronomy and natural philosophy, it was not until 1855 that western chemical ideas and practices were published in Chinese. A major change began in 1865 when the Kiangnan arsenal was established in Shanghai to manufacture western machinery. Within this arsenal a school of foreign languages was set up. Among the European translators was John Fryer (1839-1928), who devoted his life to translating English science texts into Chinese and to editing a popular science magazine, Ko Chih Hui Phien (Chinese Scientific and Industrial Magazine) .

8.4. Greek Alchemy

8.4.1. Stoicism adopted and adapted much of Aristotle's philosophy
8.4.2. physics and infinite divisibility of matter
8.4.3. inert matter and pneuma (vital spirit)

8.4.3.1. pneuma pervades cosmos, promotes generation as well as decay
8.4.3.2. fire and air were thought to be active, earth and water passive
8.4.3.3. fire and air were interpreted as forms of pneuma which became the glue that bound passive earth and water into cohesive substances.

8.4.4. practical alchemy was the child of medicine and pharmacy, dyeing and metallurgy.

8.5. Models for folklore

8.5.1. witches brew and sorcerer's concoctions

8.5.1.1. frog eye, skin of Newt, and leg of lizard

8.5.2. Macbeth's witches
8.5.3. Merlin the Magician
8.5.4. The Wizard of Id
8.5.5. magic potions of fairy tales

8.5.5.1. Cinderella and Sleeping Beauty

8.5.6. fantasy fiction: Lord of the Rings

8.6. Hierarchy of matter

8.6.1. thought that matter could advance towards a higher state of purity
8.6.2. like Socrates' moral principles
8.6.3. governments could increase ethical purity
8.6.4. people could become healthier and eventually immortal
8.6.5. less perfect metals slowly grew to become more noble

8.6.5.1. nature performed this over time inside her womb, the earth

8.6.6. significance of time

8.6.6.1. material and spiritual perfection take time
8.6.6.2. alchemist might discover method to speed up temporal processes

8.6.7. metals could "grow" towards nobility (goldness)

8.6.7.1. lead "younger" than tin which is closer to silver
8.6.7.2. antimony older yet (yellowish tint to metal)
8.6.7.3. certain reactions increased "goldness" of metals
8.6.7.3.1. alloying
8.6.7.3.2. chemical coloring

Ancient document describing manufacture of calcium polysulfide, used to change surface color of a metal. Such solutions assumed great importance for the alchemists.
". . .a handful of lime and another of sulfur in fine powder; place them in a vessel containing vinegar or the urine of a small child. Heat it from below until the supernatant liquid appears like blood. Decant this latter properly in order to separate it from the deposit, and use."

 

8.6.8. Aristotle's prime matter was not intended to be tangible stuff that could be separated from substances, but later alchemists believed it so.
8.6.9. ultimate state of matter: quintessence

9. Goals of Alchemy

9.1. searched for "elixir of life" to create immortality
9.2. searched for "philosopher's stone" to transform base matter into higher matter
9.3. searched for magic potions to cure diseases
9.4. Goals were noble

9.4.1. were not foolish
9.4.2. were not charlatan
9.4.3. were attempted out of a combination of intellectual curiosity and ignorance

9.5. Goals were not attained

9.5.1. no underlying chemical theory to guide experimentation
9.5.2. no systematic method for communicating discoveries
9.5.3. limited in what they could do by trial and error
9.5.4. mostly qualitative studies
9.5.5. difficult to control temperatures of reactions and concentrations of solutions
9.5.6. without consistent guiding theoretical structure cannot come to grips with complexity
9.5.7. from 1000 B.C. to 1700 A.D. only a few new substance were discovered which turned out to be elements

10. Accomplishments of Alchemy

10.1. attempted to systematize information
10.2. developed many techniques of modern chemistry
10.3. supplied materials
10.4. revealed information about properties of substances
10.5. put many people to work mixing and reacting various substances

11. Alchemical Elements

11.1. differed from both Aristotle's and modern concepts
11.2. substances were seen as "purveyors of elemental principles"

11.2.1. not seen as primary or pure substances
11.2.2. embodiments of principles of purity

11.3. Examples of elemental principles

11.3.1. sulfur

11.3.1.1. principle of combustibility
11.3.1.2. clear blue flame, no ashes
11.3.1.3. Sanskrit "shulbari" = copper enemy
11.3.1.4. copper "burns" in sulfur to destroy its purity

11.3.2. mercury

11.3.2.1. principle of metalness
11.3.2.2. passive (Yang) element in mineral formation

11.3.3. salt

11.3.3.1. principle of earthiness
11.3.3.2. calx (ash) remained after burning metals
11.3.3.2.1. process known as calcification

11.3.4. gold

11.3.4.1. embodied more principles than any other substance
11.3.4.2. principle of luster
11.3.4.3. principle of color
11.3.4.4. principle of heaviness
11.3.4.5. principle of nobility (inertness)

12. Alchemy vs. Chemistry

After seeing the nature of alchemy we can now list some of the important aspects of our modern science of chemistry which distinguishes it from alchemy.

12.1. Chemistry involves systematic identification and purification of substances
12.2. Chemistry seeks to understand the elemental makeup of substances

12.2.1. qualitative analysis: which elements are present in a substance
12.2.2. quantitative analysis: numerical proportions of elements present in substances

12.3. Chemistry involves the synthesis of natural and new substances
12.4. Chemistry seeks to understand the properties of substances and elements
12.5. Chemistry seeks to understand the nature of chemical reactions

13. Summary

In this lesson we examined the origins, growth, and development of ancient practices of alchemy. We saw how prehistoric chemical skills allowed our distant ancestors to the eventual discovery of the process of smelting metals. With this knowledge came the bronze age, followed by the iron age.

We noted that alchemical symbols seem to be related to, or derived from, certain archetypal symbols as specified by psychologist C.G. Jung.

Aristotle's universe included the processes of chemical change through the qualities of matter whose combinations created the four elements from which all matter was thought to be composed.

One example of alchemical mysticism is the concordance of the number of days in the week with the number of known planets and the number of known metals. The numbers refer to the number known to exist at that time.

We briefly described the main points of alchemy in the Middle East, in China, and in ancient Greece, noting the similarities and differences. We also noted the interaction of Middle Eastern alchemy with the practices and beliefs of China and India, and the eventual influence on European thought accompanying the stirrings of the Renaissance in the twelfth century A.D.

We saw some examples of the influence and persistence of alchemy is folklore and in literature in our own culture.

We were introduced to the concept of the hierarchy of matter which developed over the centuries. This was combination of the moral principles of Socrates, mixed with Aristotle's concept of transformation of matter, and the earlier alchemical experiences with chemical changes of various types.

Although the goals of alchemists were, for the most part, noble, they were not attained. The philosopher's stone and the elixir of life were never found, nor was a method found to change metals into gold. The goals were not much different from our own quests today. The alchemists fell short of their goals because they lacked a coherent theory, or paradigm, to guide their experimentation, and because the practices and discoveries were ritualized and therefore secretive.

Although the goals were not attained, the work of many centuries of alchemists prepared the way for modern chemistry by developing many of the techniques and vessels of modern chemistry. They also supplied raw materials, revealed information about the properties of substances which were useful in later studies.

By the fifteenth century a concept of elements which was different from Aristotle's and our own modern concept had evolved. Substances were seen as having mystical properties, almost like personalities which were important in their use and in their reactions. The elements were seen not as basic substances, but rather as substances which portrayed certain chemical or physical properties. The were called elemental principles. We can think of elements in the alchemical view as being "purveyors of elemental principles" such as combustibility, earthiness, luster, etc.

Finally we briefly made some comparisons between alchemy and chemistry.

14. References

14.1. Brock, William H. (1992) The Norton History of Chemistry. W.W. Norton & Company, New York
14.2. Partington, J.R. (1937) A Short History of Chemistry. Dover edition, 1989. Dover Publications, Inc., New York.